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Mathematical relationships are known to describe nearly 
all physical laws in nature1, and these mathematical 
expressions are almost always formulated as relationships 

between physical state variables that describe the physical system. 
This suggests that, before any natural law can be discovered, the rel-
evant state variables must first be identified2,3.

For example, it took civilizations millennia to formalize basic 
mechanical variables such as mass, momentum and acceleration. 
Only once these notions were formalized could laws of mechani-
cal motion be discovered. Laws of thermodynamics were discov-
ered only after concepts such as temperature, pressure, energy and 
entropy were formalized. Laws of solid mechanics could only be 
discovered once variables such as stress and strain were formal-
ized. Electromagnetism, fluid dynamics, quantum mechanics and 
so forth all required their own set of fundamental state variables 
to be defined before they could be formalized into existence. 
Without the proper state variables, even a simple system may 
appear enigmatically complex.

The set of state variables for modelling any system is not only 
hidden, but also not unique (Extended Data Fig. 1). In fact, even for 
well studied systems in classical mechanics, such as a swinging pen-
dulum, many sets of possible state variables exist. For the pendu-
lum, the state variables are typically the angle of the arm q1 = θ and 
the angular velocity of the arm q2 = θ̇. The angle and angular veloc-
ity are convenient choices because they can be directly measured. 
However, alternative sets of state variables, such as kinetic and 
potential energies of the arm, could also be used as state variables.

A key challenge, however, occurs when the system is new, 
unfamiliar or complex, and the relevant set of state variables is 
unknown. Although various techniques such as dynamic mode 
decomposition and singular value decomposition4 have been devel-
oped to learn dynamical systems on the basis of observations, none 
of these methods has the ability to process a video of a pendulum, 
for example, and without any further knowledge output the double 
pendulum’s four state variables. Such an ability, if possessed, could 

help scientists gain insight into the physics underlying increasingly 
complex phenomena, especially when theory is not keeping pace 
with observations.

Data-analytics tools have impacted almost every aspect of scien-
tific discovery5,6: machines can measure, collect, store and analyse 
vast numbers of data. New machine learning techniques can cre-
ate predictive models, find analytical equations7 and invariants8, 
and even generate causal hypotheses along with new experiments 
to validate or refute these hypotheses9–11. Yet, a longstanding ques-
tion is whether it is possible to automatically uncover the hidden 
state variables themselves. Finding such variables is still a laborious 
process requiring teams of human scientists toiling over decades.

The ability of human scientists to distil vast streams of raw 
observations into laws governing a concise set of relevant state vari-
ables has played a key role in many scientific discoveries. It is thus 
of great importance to have tools for automated scientific discovery 
that could help distil raw sensory perceptions into a compact set of 
state variables and their relationships.

Numerous machine learning tools have been demonstrated to 
model the dynamics of physical systems automatically, but most of 
them were already provided with measurements of the relevant state 
variables in advance7,8,12–26. In this Article, by state variables we refer 
to compact and complete sets of quantitative variables that fully 
describe the observed dynamical system evolving with time. For 
example, our own previous work on distilling natural laws8 assumed 
an input stream corresponding to state variables such as angle and 
angular velocity of a pendulum arm. Brunton et al.24 required access 
to spatial coordinates and their derivatives for modelling a Lorenz 
system, Udrescu and Tegmark26 combined neural networks with 
known physical properties to solve equations from the Feynman 
Lecture on Physics, given provided variables, Mrowca et al.27 
required access to the position, velocity, mass and material proper-
ties of the particles that compose the objects being modelled and 
Champion et al.28 predefined possible basis functions to constrain 
the training of an autoencoder for observation reconstruction.
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The goal of this work is to find a way to overcome this key 
barrier to automated discovery—by explicitly identifying the 
intrinsic dimensionality of a system and the corresponding hid-
den state variables, purely from the visual information encoded 
in raw camera observations. A key challenge in identifying state 
variables is that they are often hidden and might be hard to mea-
sure directly. An even more challenging aspect of state variable 
identification is that there might be a large number of potential 
descriptive variables that are related to the varying state of the 
system, but are neither compact nor complete in their description 
of the system.

For example, a camera observing a swinging pendulum with an 
imaging resolution of 128 × 128 pixels in three colour channels will 
measure 49,152 variables per frame. Yet this enormous set of mea-
surement, while intuitively descriptive, is neither compact nor com-
plete: in fact, we know that the state of a swinging pendulum can be 
described fully by only two variables: its angle and angular veloc-
ity. Moreover these two state variables cannot be measured from a 
single video frame alone. In other words, a single frame, despite the 
large number of measurements, is insufficient to describe the full 
state of a pendulum.

The questions that we aim to answer are whether, given a series 
of video frames of a swinging pendulum that contain the full and 
accurate motion trajectories, for example, there is a way to know 
that only two variables are required to describe its dynamics in full, 
and whether there is an automated process to reduce the vast deluge 
of irrelevant and superfluous pixel information into representations 
in terms of the two state variables. Naturally, we would like this pro-
cess to work across a variety of physical systems and phenomena.

The starting point of our approach is to model the system 
dynamics directly from video representations via a neural network 
with bottleneck latent embeddings29–31. If the network is able to 
make accurate future predictions, the network should internally 
encapsulate a relationship connecting relevant current states with 
future states. Our main challenge is to distil and extract the hidden 
state variables from the network encoding.

Our approach involves two major stages. First, after training the 
dynamics predictive neural network, we calculate the minimum 
number of independent variables needed to describe the dynami-
cal systems, known as its intrinsic dimension (ID), with geometric 
manifold learning algorithms. This initial stage produces accurate 
ID estimations on a variety of systems from the model’s bottleneck 
latent embeddings which are already reduced by hundreds of times 
compared with the raw image space.

Armed with the ID obtained in the first stage, in the second stage 
we design a latent reconstruction neural network to further iden-
tify the governing state variables with the exact dimension of the 
ID. We term these identified state variables neural state variables. 
Through both quantitative and qualitative experiments, we demon-
strate that neural state variables can accurately capture the overall 
system dynamics.

Beyond our two-stage approach to reveal the system ID and 
the possible set of state variables, another major contribution of 
our work is to leverage the discovered neural state variables as 
both an intermediate representation and an evaluation metric for 
stable long-term future predictions of system behaviours. Due to 
the special reduced-dimension property of neural state variables, 
they can provide very stable long-term predictions, while higher-
dimensional autoencoders often yield blurred or plain background 
predictions if iterated just a few steps into the future.

Finally, we present a hybrid prediction scheme that achieves 
both accurate and stable long-term predictions. Furthermore, we 
derive a quantitative evaluation metric for long-term prediction 
stability with neural state variables by approximating the true sys-
tem dynamics using the most compact latent space. Additionally, 
we also demonstrate that neural state variables can offer a robust 

representation space for modelling system dynamics under various 
visual perturbations.

Results
Modelling dynamical systems from videos. The dynamics of 
a physical system defines the rule that governs how the current 
system states will evolve into their successive states in the future. 
Mathematically, provided the ambient space X  and the state space 
S ⊂ X , one can formulate the dynamical system as

Xt+dt = F(Xt), t = 0, dt, 2 dt, 3 dt,…, (1)

where Xt ∈ S is the system’s current state at time t and dt is the dis-
crete time increment. F : S → S describes the state evolution from 
Xt to the system’s successive state Xt + dt at time t + dt. Throughout 
this paper we will consider the system as discrete in time. Any 
dynamical system continuous in time can also be discretized to for-
mulation (1) with an appropriate dt.

Our goal is to learn the most compact space that implicitly cap-
tures the entire system dynamics from only high-dimensional visual 
data. To achieve this, we formulate a self-supervised learning prob-
lem to leverage the natural supervision from future video streams. 
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Fig. 1 | Two-stage modelling of dynamical systems. a,b, First stage: ID 
estimation. We first modelled the dynamical systems via the evolution 
from Xt to Xt + dt with a fully convolutional encoder–decoder network directly 
from video observations (a). Xt ∈ R

M represents the input video frames 
with dimension M. The dimension of the latent embedding Lt → t + dt is defined 
as LD. We then applied a geometric manifold learning algorithm on the 
latent embedding to identify the ID (b). c, Second stage: discover neural 
state variables. We applied another encoder–decoder network on top of the 
above latent vectors to automatically determine the neural state variables, 
denoted as Vt → t + dt, by limiting the latent dimension of this network to 
the identified ID. hE is the encoder and hD is the decoder of this second 
network. The objective of this network is to predict the reconstructed latent 
embedding denoted as L̂t→t+dt. d, Once we determine the neural state 
variables, we can leverage the system dynamics in the space of neural state 
variables as an indicator of dynamics stability. Here we approximate the 
latent system dynamics through a neural network F̂V to predict the future 
neural state variables denoted as V̂t + dt → t+ 2 dt.
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Therefore, X  is the high-dimensional image space. Our model is 
based on an autoencoder neural network to map high-dimensional 
visual observations to a relatively low-dimensional embedding, 
which will then be projected to future video frames. Formally, our 
framework comprises five major components, as shown in Fig. 1a: 
a pair of input image frames Xt, an encoder network gE, a latent 
embedding vector Lt → t + dt, a decoder network gD and a pair of output 
future frames Xt + dt. In Methods, we give more information on our 
choice of state representations and their advantages.

First, to study the generality of the proposed approach, we 
compiled a dataset comprising video recordings of nine physical 
dynamical systems from various experimental domains (Extended 
Data Fig. 1), ranging from simple periodic motion (circular motion, 
single pendulum), chaotic kinematics (rigid double pendulum, elas-
tic double pendulum, swing stick), nonlinear wave (reaction–diffu-
sion system) and multiphase flow (lava lamp) to aeroelasticity (air 
dancer) and combustion (flame dynamics). We include full details 
of the dataset in Supplementary Section 1.

In Fig. 2, we show comparisons between the predicted video 
frames and the ground-truth recordings. Our model was able to 
produce accurate video predictions. Our model also substantially 
outperforms linear extrapolation and copying input data baselines 

as shown in Supplementary Section 4 suggesting that our model 
captures non-trivial understanding of the system’s second-order 
dynamics. For a dataset with ground-truth physical quantities such 
as an elastic double pendulum, our system was able to predict the 
physical variables accurately compared with the ground truth. 
For more intuitive and quantitative understanding of the physics 
evaluation results, we provide more statistics of the evaluation in 
Supplementary Section 2. Overall, the evaluation results suggest 
that the model successfully captured a non-trivial understanding of 
the system dynamics.

ID estimation. ID has served as a fundamental concept in many 
advances in physical sciences. In general, the ID refers to the mini-
mum number of independent variables needed to fully describe 
the state of a dynamical system. The ID is independent of specific 
representations of the system or choice of a particular set of state 
variables. In a more quantitative way, the ID could be equivalently 
defined as the topological dimension of the state space S as a mani-
fold in the ambient space X  (refs. 32–34).

A common assumption when analysing a physical system is 
that the ID is known a priori. An even stronger assumption is that 
the corresponding state variables themselves are given. Yet these 

Dataset name Input

Reaction–diffusion

Output Ground truth

Single pendulum

Rigid double
pendulum

Elastic double
pendulum

Swing stick

Air dancer

Lava lamp

Fire

Fig. 2 | Prediction visualizations and physics evaluations. Visualizations of our basic prediction results across multiple dynamical systems with their input 
frames and the corresponding ground-truth frames. For systems where physical variables happen to be available, we performed physics evaluations on 
these systems in Supplementary Section 4.

Nature Computational Science | www.nature.com/natcomputsci

http://www.nature.com/natcomputsci


Articles NATurE CoMpuTATionAl SciEncE

assumptions do not hold for unknown or partially known systems. 
To uncover the underlying dynamics of a wide range of systems 
and make future predictions of their future behaviours, we need to 
automatically identify the ID of the systems and extract the corre-
sponding state variables from observed data, which is often high 
dimensional and noisy.

A naive approach using an autoencoder predictive framework is 
to keep reducing the size of the latent embedding vector through 
trial and error until the output is no longer valid. However, this 
approach does not yield satisfactory results because the output dete-
riorates long before the minimal set of state variables is reached. 
As shown in Fig. 3a, the model predictions broke down when we 
directly shrank the size of the latent space to the ID.

Inspired by traditional manifold learning methods that  
utilize geometric structures of the embedding vectors (such as their 

nearest distances), we propose a solution that can automatically dis-
cover the ID of a dynamical system from the latent vectors. Our 
approach only needs a one-time network training step. Specifically, 
we applied the Levina–Bickel algorithm35 on the latent embedding 
space. We discuss more algorithm details in Methods.

Figure 3b shows the estimations across all the systems in our 
holdout dataset along with baseline comparisons from raw image 
observations and partial ground truths. The error bar represents the 
s.d. of the estimated IDs. We include the exact numbers in a table 
in Supplementary Section 5. The estimated ID values are rounded 
to the nearest even integer, as position and velocity variables are in 
pairs in our systems. In practice, it may be necessary to explore some 
nearby values on the basis of our algorithm’s results. Our method 
demonstrates highly accurate estimations of the ID of all known 
systems. Although we cannot account for the ground-truth ID of 
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Fig. 3 | ID and neural state variables. a, The first column is the input frames to the predictive models. The second column shows the unsatisfactory 
prediction by directly reducing the size of the latent embedding on the original autoencoder, and the third column shows the accurate predictions 
produced by our two-stage method. The fourth column gives the ground-truth future frames. b, The ID estimation results. Our method estimates ID 
without prior knowledge about the systems’ state variables as shown in orange box plots. We calculate the estimated ID values over 15 groups of random 
samples using models trained with three random seeds for each system. The box is drawn from the first quartile Q1 to the third quartile Q3 with a horizontal 
line representing the median. The lower and upper whiskers represent the data range within the interval [Q1 − 1.5(Q3 − Q1), Q3 + 1.5(Q3 − Q1)]. Our method 
outperforms direct estimations from raw images as in red box plots. The ground-truth IDs for known systems are included in the parentheses of each 
label of the x axis. We include the exact numbers in Supplementary Section 5. c, By making predictions through the space of our discovered neural state 
variables, we show the one-step prediction results for two systems. On each side, the first column shows the input to the network, and the second and 
third columns show the output and ground truth of the prediction results.
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other systems, we do see that our experiments present a reasonable 
and intuitive relative ranking among all listed systems.

We also compared the performance of the Levina–Bickel 
algorithm with other popular intrinsic dimensionality estima-
tion algorithms including MiND_ML, MiND_KL, Hein and 
CD34,36–39 by following the original implementations37,38. We pres-
ent full evaluations in Supplementary Section 5. Though all the 

algorithms demonstrated promising performance, we found  
that the Levina–Bickel algorithm gives the most robust and  
reliable estimation.

Neural state variables. As we have discussed above, the minimum 
set of independent state variables V used to describe the dynami-
cal system has the dimension known as the ID, namely V ∈ R

ID.  
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To simplify the terminology, we refer them as state variables directly 
throughout the rest of this paper.

Now that we have identified the number of state variables, we 
need to find the actual variables themselves (bearing in mind that 
the set is not unique). We propose a two-stage framework to retrieve 
possible state variables as shown in Fig. 1a–c. We term our subset 
of state variables as neural state variables. Hence, with neural state 
variables V, the dynamical system can be expressed as the evolution 
of the trajectory {V0 → dt, Vdt → 2 dt, …}.

The first stage is to identify ID as discussed previously. This 
stage yields a relatively low-dimensional latent embedding L ∈ R

LD

, where LD is the dimension of this latent embedding. However, 
LD is still much larger than ID. The second stage operates directly 
on the latent embedding to further distil the neural state variables. 
We trained a second autoencoder network to take in the pretrained 
latent embedding and output the reconstruction of the input. The 
special property of this network is that the size of the latent embed-
ding is equal to the ID obtained from the first step. With a mini-
mum reconstruction error, we can identify this latent embedding 
vector as the neural state variables.

Overall, our two-stage method bypasses the optimization chal-
lenges and avoids the risk of underfitting the observed data. In  
Fig. 3c, we qualitatively demonstrate the effectiveness of our 
approach. For all the systems in our dataset, our framework is able 
to predict accurate future frames from supercompact variables with 
dimension ID (for example, ID = 4 for rigid double pendulum and 
ID = 6 for elastic double pendulum).

Neural state variables for stable long-term prediction. Forecasting 
the long-term future behaviours of unknown physical systems by 
learning to model their dynamics is critical for numerous real-world 
tasks. With a dynamics predictive model giving the one-step predic-
tion, we can perform model rollout to feed each step’s prediction 
as the input to predict the next state. However, there are two main 
challenges to obtaining satisfactory long-term predictions.

•	 Non-iterative one-step prediction accuracy. The learned dynam-
ics may not be accurate since prediction errors are iteratively 
introduced at every prediction step. This issue is mainly attrib-
utable to the one-step prediction accuracy.

•	 Long-term prediction stability. Due to iterative error accumu-
lation, the predicted sequences may not be able to maintain 
the ground-truth state space: one repeated observation from 
past studies is that the long-term predicted sequences become 

blurred, heavily distorted or plain background within only a few 
rollouts. We also observed similar phenomena in our experi-
ments as shown in Fig. 3a. This is a very important issue to 
resolve because if objects deform or entirely disappear without 
following the system dynamics it will be impossible to follow the 
system evolution faithfully.

Long-term prediction stability refers to the deviation between the 
predicted sequences generated from the learned dynamics and the 
ground-truth state space governed by the system dynamics. Given a 
metric MS(·) that measures the deviation of a predicted state from 
the true state space S, and a prediction sequence {X̂0, X̂dt,… } from 
any initial state X̂0, we can quantify the stability of a prediction 
scheme as the growth rate of MS(X̂t) as a function of t.

One challenge is to define at what point the predicted image 
becomes so degraded that it does not count as a prediction at all. We 
define an image quality test as follows (used only for evaluation): 
for systems for which we have prior knowledge about their conven-
tional state variables, and we can extract these physical variables 
from the corresponding videos through classic computer vision 
techniques (for example, colour and contour extraction), Mphys

S
(·) 

can be readily defined as a binary value indicating whether the 
same set of physical variables can still be distilled from a predicted 
state X̂  as its corresponding ground-truth state. Consequently, if 
the predicted frame is heavily blurred or distorted, we will not be 
able to distil meaningful physical variables. Thus, Mphys

S
(X̂) will be 

1. Otherwise Mphys
S

(X̂) will be 0.
Moreover, to more generally capture the long-term predictive 

stability of various prediction schemes, Mphys
S

(·) should be evalu-
ated on prediction sequences with multiple initial states. Therefore, 
we further define Mphys

S
(·) as the reject ratio to indicate how 

many predicted frames at each time step from different initial 
states will fail to pass the physical variables extraction test.

With the above test, we can quantitatively compare the stabil-
ity of various long-term prediction schemes, namely iterative 
long-term predictions through high-dimensional latent vectors 
(8,192 variables or 64 variables), and predictions through neural 
state variables. Please refer to Methods for a formal definition of  
each scheme.

Figure 4a shows the stability results for the rigid double pendu-
lum and elastic double pendulum where we can extract the physical 
variables from videos. The 8,192-dimensional and 64-dimensional 
schemes cannot give stable long-term future predictions. In our 
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64-dimensional latent space and our compact neural state variable space. c, The strong Pearson correlation results between the latent dynamics error and 
the physics reject ratio.
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experiments, we found that the same conclusion still holds for vari-
ous relatively high dimensions. Therefore, our finding is robust to 
different dimensions. We also noticed that both schemes can provide 
stable predictions when the system ID is smaller or equal than 2.

Inspired by lessons learned from computational physics, an 
effective fix for the unstable long-term prediction is to construct 
a prediction scheme where the predicted states will be projected 
into a small neighbourhood of the state space. Here neural state 

variables serve as a reasonable candidate solution. This is because 
neural state variables have the same dimension as the ID. This 
fact prevents predictions from falling off the system manifold into 
new dimensions. We provide more detailed theoretical analysis in 
Supplementary Section 7.

The blue curves in Fig. 4a illustrate the stability introduced  
by using neural state variables as intermediate representations for 
long-term predictions. Neural state variables provide the most 
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Fig. 6 | Neural state variables for robust long-term prediction. a,b, The perturbation evaluation results using the physical reject ratio metric to measure 
the long-term prediction robustness on the single-pendulum system (a) and the rigid double-pendulum system (b). Each subplot depicts the results under 
different perturbation levels across all prediction schemes. Each row implies a different perturbation type. s.e.m. values of the reject ratios are reflected 
as the shaded regions. dim-8,192 and dim-64 are prediction schemes directly through relatively high-dimensional latent space with dimensions 8,192 and 
64 respectively. dim-2 and dim-4 are prediction schemes through the space of neural state variables. c, Visualizations of the perturbation evaluations. We 
show the perturbed input frames in the first two columns, followed by the ground-truth future frames and the predicted future frames from two different 
prediction schemes. The dim-2 column is the output from our prediction scheme through the space of neural state variables.
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stable predictions across all the systems. However, since neural 
state variables were obtained by performing reconstruction on a 
relatively high-dimensional latent embedding, they have an inferior 
performance on one-step prediction accuracy.

To leverage the advantages from both worlds, we propose a 
hybrid scheme as our final solution: using neural state variables as 
stabilizers while performing long-term predictions with their cor-
responding high-dimensional latent embeddings. Formally, the 
hybrid scheme follows an N + 1 pattern, where for every N steps 
performed with the high-dimensional latent vectors a one-step 
prediction is followed with the neural state variables. As shown by 
the purple curves in Fig. 4a, our hybrid scheme offers stable and 
accurate long-term predictions. In Fig. 4, the hybrid scheme was 
implemented with specific values of N between 3 and 6. We also 
conducted experiments described in Supplementary Section 6 with 
different choices of N and found that the outcomes were not sensi-
tive to the particular values of N.

Another important note is that the use of pixel error as the eval-
uation metric, though easy to compute, can be misleading for the 
evaluation of long-term predictions when the predictions quickly 
become unstable. As quantitatively and qualitatively demonstrated 
in Fig. 4, pixel errors remain roughly the same after the predicted 
images become plain backgrounds. These pixel errors are even 
smaller than the pixel errors computed from a slightly inaccu-
rate but clear prediction. This observation further emphasizes the 
importance of designing an appropriate MS(·) metric.

Neural state variables for dynamics stability indicators. So far, to 
evaluate long-term prediction stability, we have been assuming that 
we can extract the physical variables from the system states during 
evaluation. However, in most of the video representations in our 
dataset we do not know either which variables to extract or how to 
extract them directly from videos. As noted above, pixel errors are 
also not reliable. In this case, a very challenging but important prob-
lem is how we can evaluate the long-term prediction stability from 
videos. Resolving this problem can potentially open up the door to 
quantitatively evaluate prediction stability of various schemes for 
many complex and unknown systems, all directly from videos.

Following the framework in the last section, the key is the design 
of the metric MS(·). Here we propose a solution based on neural 
state variables, namely Mneur

S . Specifically, Mneur
S  is a metric on a pair 

of states (X̂t, X̂t+dt).

Mneur
S (X̂t, X̂t+dt) =

∣

∣hE ◦ gE(X̂t+dt)− F̂V(hE ◦ gE(X̂t))
∣

∣ ,

where F̂V  is a neural network trained to approximate the latent dynam

ics on the space of neural state variables V̂t+dt→t+2 dt ← F̂V(Vt→t+dt), 
hE ◦ gE(X̂t) = V̂t→t+dt and hE ◦ gE(X̂t+dt) = V̂t+dt→t+2 dt are neural  
states in RID and |·| is the Euclidean norm in RID.

As shown in the previous sections, all latent embeddings with 
dimension higher or equal to the ID may provide an accurate short-
term approximation of system dynamics. However, we chose the 
space of neural state variables as the reference because it has the 
same dimension as the ID. First, as mentioned above, neural state 
variables project the predicted states in the small neighbourhood 
of the ground-truth states. Moreover, the Euclidean distance serves 
as a good metric to measure the dynamics deviation in this case, 
while other higher dimensions may suffer the curse of dimensional-
ity when designing the distance metric. Overall, Mneur

S  is an ideal 
alternative candidate to Mphys

S
.

Similarly to Mphys
S

, the final Mneur
S

 is computed across multiple 
prediction sequences with various initial states. We show the evalu-
ation results with our stability metric based on neural state variables 
in Fig. 5. Mneur

S  produces patterns that strongly match with Mphys
S

 for 
the systems where we know how to extract physical variables. This 

can also be seen in the correlation plot in Fig. 5 where we computed 
the Pearson correlation coefficient between the reject ratios of all 
models (dim-8192, dim-64, dim-ID, hybrid) at all prediction steps 
and the respective latent dynamics errors. For unknown systems, 
we observed the same trend, where high-dimensional latent embed-
ding schemes are often not stable. In conclusion, our Mneur

S  met-
ric can help us measure the long-term prediction stability directly  
from videos without additional prior knowledge of the system. 
Mneur

S  evaluates the long-term prediction stability in a different 
space than does Mphys

S
.

Neural state variables for robust long-term prediction. Another 
critical factor when modelling system dynamics from videos is the 
robustness against visual perturbations. Therefore, we applied sev-
eral visual perturbations in the space of visual sensor observations 
(that is, the input video frames) during the test time and evaluated 
the performances of different models. Please refer to Methods for a 
detailed description of each type of applied perturbation.

We show the test-time results using the physical reject ratio 
metric in Fig. 6a,b. The quantitative results clearly demonstrate the 
strong robustness of models on the neural state variable space across 
all levels of perturbation. The models with very high-dimensional 
latent space quickly produce unstable predictions. The models with 
a dimension that is relatively low but still higher than ID can some-
times give stable predictions again after several unstable rollouts. 
However, even though the predictions can become stable again, this 
requires a much greater number of prediction steps. We also show 
qualitative visualizations in Fig. 6c.

Though our models on the neural state variable space consis-
tently produce stable predictions under various noise perturbations, 
they do not always give accurate predictions, especially when the 
noise levels are relatively high. We provide more failure examples in 
Supplementary Section 12.

Analysis. We hypothesize that neural state variables contain rich 
physical meanings that align with the conventional definition of 
the physical state variables. In this section, we verify this hypothesis 
through both quantitative regression experiments and qualitative 
visualizations.

We trained a small neural network with five layers of multilayer 
perceptrons to regress conventional physical variables including 
positions, velocities and energies from learned neural state vari-
ables. Our results are shown in Supplementary Section 9. The val-
ues are L1 errors with their s.e.m. Using 30% of labelled data, the 
learned neural state variables can be used to accurately regress the 
physical variables. We then compared the regression errors with 
those from the first few principal components of high-dimensional 
latent vectors from our dynamics predictive model. Using the same 
number of state variables, which is equal to the ID, and the same 
labelled data, the regression errors using principal components of 
high-dimensional latent vectors are much larger than those using 
neural state variables, especially for velocity variables. Therefore, 
state variables obtained through principal component analysis, 
or equivalently through linear neural networks, have difficulty in  
capturing the dynamics of the system.

Visualizations coloured according to the value of physical vari-
ables in Extended Data Fig. 2 can further demonstrate the physical 
meaning of the neural state variables. We observe that the physi-
cal variables are indeed captured in the set of neural state variables 
chosen by our modelling system. The charts also reveal the inherent 
symmetrical nature of these variables.

Discussion
Overall, this work proposes several advancements that comple-
ment the existing works. There are many promising directions for  
the future research. First, the learned neural state variables currently 
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do not have units, which make them less interpretable in phys-
ics. This is due to the non-uniqueness of the current neural state 
variables. Therefore, one future direction is to further regularize 
the neural state variables with prior physical knowledge, existing 
physics-informed artificial intelligence techniques or dimensional 
analysis with units, so that they could have better correspondence to 
traditional physical variables and satisfy physical constraints such as 
energy conservation40–47. Another interesting question is to investi-
gate if there is a governing principle to allow us to to choose one set 
of variables over another48. Moreover, when frames are corrupted 
or contain incomplete information because of hidden factors, sys-
tem uncertainty or inappropriate sampling frequency, the obser-
vation data may not fully capture the real physics. Regularization 
techniques49,50 can help us design algorithms to provide effective 
and automated remedies for such imperfect observation data. For 
complex systems with little prior physical knowledge, another inter-
esting direction is to analyse the neural state variables and trans-
late them into human-interpretable physics. Finally, the proposed 
framework of distilling neural state variables and generating stable 
long-term predictions can be used as a component of automated 
control systems.

Methods
Dynamics predictive model from videos. The first step towards modelling a 
dynamical system is to choose the representation of system states. Previous studies 
assume that the states are given as the direct measurements of a set of predefined 
state variables, such as the position and velocity of a rigid body object. However, 
defining which state variables to measure requires expert prior knowledge of 
the system. For an unfamiliar physical system, we do not know in advance what 
quantities to measure. Moreover, most state variables are not directly measurable, 
as they correspond to properties that are not physically observable in a non-
intrusive manner or cannot be uniquely determined without prior knowledge.

In this work, we chose video frames as the state representation. Using the 
notations above, X  is the high-dimensional image space. This choice comes with 
several advantages. First, video recordings do not require prior knowledge of the 
inner working processes of the observed dynamical system. Second, video cameras 
collect a rich stream of physics signals, without requiring expensive and specialized 
equipment. If we can apply our method to data collected by video cameras, then 
this approach could potentially operate with other types of sensor array.

For the dynamical systems studied in our paper, both the input and output 
image pairs are two consecutive frames with the dimension 128 × 128 × 3 RGB 
channels. The pairs of frames are concatenated to form single input and output 
image. gE and gD are fully convolutional networks. The network first outputs 
Lt → t + dt = gE(Xt) and then generates the future frames X̂t+dt.

To train the encoder and decoder networks, we use a simple L2 loss function 
without other constraints:

L = EX
[

∥ gD(gE(Xt)) − Xt+dt∥
2
2

]

.

The learned mapping F̂ = gD ◦ gE provides a numerical approximation of the 
system’s evolution mapping F through the latent embedding.

Discussion on the dimension of latent embedding. One critical but largely 
ignored design decision is the dimension of the latent embedding Lt → t + dt of the 
first autoencoder network to predict future video frames. Here we define this 
dimension as LD. In machine learning, LD is often treated as a hyperparameter 
selected using an ‘educated guess’ because it is not immediately clear what the best 
value of LD should be. However, this dimensionality is especially important for 
physical dynamics modelling. When LD is large, the latent embedding can hold 
large numbers of useful bits of information about the system dynamics. However, 
large embedding vectors can overfit the data and have limited capacity for longer-
range prediction. More importantly, large latent spaces hide and obfuscate the 
compact set of state variables we are after. When LD is too small, the network 
may underfit the data. Therefore, we aim to come as close as possible to the exact 
number of state variables in the next section.

Levina–Bickel algorithm for ID estimation. The algorithm considers latent 
vectors {L(1), L(2), …, L(N)} collected from the trained neural network that predicts 
dynamics as N data points on a manifold of dimension ID in the latent embedding 
space. A key geometric observation is that the number of data points within 
distance r from any given data point L(i) is proportional to rID when r is small.

On the basis of the observation, the Levina–Bickel algorithm derives the local 
ID estimator near L(i) as 1

k−2
∑k−1

j=1 log Tk(L(i))
Tj(L(i))

, where Tk(L(i)) is the Euclidean 

distance between L(i) and its kth nearest neighbour in {L(1), L(2), …, L(N)}. The global 
ID estimator is then calculated as

IDL−B =
1
N

N
∑

i=1

1
k − 2

k−1
∑

j=1
log Tk(L(i))

Tj(L(i))
.

Model details to discover neural state variables. In this section, we detail our 
model that reconstructs the pretrained latent embedding from the aforementioned 
dynamics predictive model. Specifically, the network can be expressed as follows: 
Vt → t +dt = hE(Lt → t + dt) and L̂t→t+dt = hD(Vt→t+dt). We train the latent reconstruction 
model with the L2 loss: L = EL

[

∥ hD(hE(Lt→t+dt)) − Lt→t+dt∥
2
2
]

.

Definition of long-term prediction schemes. These schemes are based on iterative 
model rollouts but they differ in the size of intermediate variables. When the model 
rollouts are through high-dimensional latent vectors (8,192 variables or 64 variables), 
the iterative scheme is given by X̂t+dt = gD ◦ gE(X̂t), t = 0, dt, …, where gE and gD 
represent the first autoencoder that transforms input frames to the predicted frames 
via latent embeddings. When the model rollouts are through neural state variables, 
the iterative scheme is given by X̂t+dt = gD ◦ hD ◦ hE ◦ gE(X̂t), t = 0, dt, ….  
The original latent embeddings are computed from input frames with gE, and  
the reconstructed latent embeddings will be sent to gD to produce the final  
predicted frames.

Intuition of evaluating dynamics stability with neural state variables. Intuitively, 
Mneur

S
 measures how far the predicted dynamics, reflected by the given predicted 

sequence, deviates from the reduced system dynamics projected onto the space 
of neural state variables. The above equation can be conceptually thought of 
measuring the distance between two quantities. The first quantity is calculated by 
projecting the predicted system dynamics from the high-dimensional model to the 
neural state variable space, and the second quantity is the reduced system dynamics 
from the ID model.

Perturbations for evaluating long-term prediction robustness. We performed 
three types of perturbation. The first type is to simulate camera occlusions by 
covering a certain portion of the input frames with a randomly generated colour 
square. The area of the square indicates the level of the perturbation. For example, 
1
64 means that the area of the square is 1

64 of the area of one input frame.
The second type is to simulate background colour change by covering a certain 

portion of the input frame background with a randomly generated colour square. 
The main difference between this perturbation and the first one is that the colour 
square will not cover the object. The level definition is the same as for the first 
perturbation type.

Finally, to simulate possible sensor noise, we added random Gaussian noise to 
the input frames. The Gaussian noise has a zero mean and different levels of s.d. 
For example, 1

64 means that the Gaussian noise has an s.d. of 1
64 × 255, where 255 is 

the highest pixel value in the input frames.

Data availability
All of our simulated and physical dataset repository is available51. Source data for 
Figs. 2b, 3b, 4a, 5 and 6a and Extended Data Fig. 2 are available for this Article.

Code availability
The open-source code to reproduce our training and evaluation results is available 
at the Zenodo repository52 and GitHub (https://github.com/BoyuanChen/
neural-state-variables).
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Extended Data Fig. 1 | What state variables describe these dynamical systems?. What state variables describe these dynamical systems? Identifying 
state variables from raw observation data is a precursor step to discovering physical laws. The key challenge is to figure out how many variables will give  
a complete and non-redundant description of the system’s states, what are the candidate variables, and how the variables are dependent on each other. 
Our work studies how to retrieve possible set of state variables from data distributions non-linearly embedded in the ambient space.
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Extended Data Fig. 2 | PCA and Neural State Variables visualization. PCA and Neural State Variables visualization. Here we visualize the interesting 
symmetrical structures encoded in the Neural State Variables from single pendulum (A) and rigid double pendulum (B) after applying PCA algorithm on 
them. The colors represent the value of different physical variables. The x-axis and y-axis represent different components of the Neural State Variables.
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